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ABSTRACT The rise of interconnected devices through wireless networks provides two sides consequences.
On one side, it helps many human tasks; on the other hand, the prone wireless medium opens the vulnerable
system to be exploited by adversaries. An Intrusion Detection System (IDS) is one method to inspect the
network traffic by leveraging state-of-the-art anomaly detection techniques. Deep learning models have
been utilized to distinguish the benign and malicious traffic. However, projecting the tabular data into
images before the image classification has been the main challenge of leveraging deep learning for IDS
purposes. We propose the novel projection of tabular data into 2-coded color mapping for IDS purposes. The
proposed method employs a feature selection method to ensure optimal dimensionality. We examined the
different number of attribute subsets to obtain the relationship between the attributes. Furthermore, it takes
advantage of the Convolutional Neural Network (CNN) model to classify the Wi-Fi attacks. We evaluate the
proposed model using the most common Wi-Fi attacks dataset, Aegean Wi-Fi Intrusion Dataset (AWID2).
The proposedmethod achieved an F1 score of 99.73% and a false positive rate of 0.24%. This study highlights
the importance of addressing the mapping procedures from tabular data into grid-based data before deep
learning training and validates the effectiveness of CNN to detect multiple types of wireless network attacks.

INDEX TERMS Wireless attacks, intrusion detection system, convolutional neural network, anomaly
detection.

I. INTRODUCTION
Lately, the Internet of Things (IoT) has developed very
fast [1]. One particular characteristic of IoT devices is
widely interconnected through a wireless network with lim-
ited power and storage resources [2]. That being the case,
information security issues have becomemore prominent and
need to be addressed seriously. As the number of Internet
users grows, not all people have decent digital literacy knowl-
edge; adversaries have identified this phenomenon. Adver-
saries have developed several attacks over wireless networks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Baozhen Yao .

Lightweight devices such as fridges, routers, smart doors, and
webcams are vulnerable to security threats [3]. An Intrusion
Detection System (IDS) provides one of the efficient systems
to ensure the confidentiality, integrity, and availability of an
Internet network by proactively inspecting the network traf-
fic [4]. Furthermore, the emergence of Deep Learning (DL)
allows a DL-based IDS as a promising solution to Internet
security problems [5].

IDS can be classified into two classes: signature-based and
anomaly-based. Signature-based IDS uses the attack signa-
ture to detect a particular attack that matches the pattern.
Antivirus developers initially used this methodology. A list
of Indicators of Compromise (IOCs), which is kept updated
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from time to time, is required to ensure detection accuracy.
However, signature-based IDS is vulnerable to unknown
attacks. Slight modification on the attack signature or traf-
fic encryption is sufficient to bypass this IDS type. On the
other hand, behavior-based IDS monitors inbound network
traffic to check any suspicious behavior. Behavior-based
IDS increases the likelihood of unknown attack mitigation,
while signature-based IDS identifies particular attack sig-
natures. The behavior-based IDS usually leverages state-of-
the-art artificial intelligence models to distinguish between
benign and malicious traffic.

Popular deep learning classifiers, such as Decision Tree
(DT), Random Forest (RF), Support Vector Machine (SVM),
and Naïve Bayes (NB), have been utilized by several IDS
research [6]. DT organizes data in a tree structure that splits
data based on the feature value [7]. RF is a group of decision
trees that choose features randomly during the classification
process [8]. The randomized feature selection can generalize
the data and prevent overfitting. SVM classifies data by divid-
ing them using hyper-planes as the boundaries [9]. Finally,
the naïve Bayes method is based on the Bayes theorem that
computes the probability of defined classes on a dataset [10].

However, the methods listed above have similar limita-
tions. They cannot perform well on a complex dataset with
high dimensionality, especially since most IDS datasets are
tabular. Because of this reason, we want to propose a deep
learning framework for IDS that can cope with the complex
dataset. Recursive Feature Elimination and Cross-Validation
Selection (RFECV) is a wrapper-type feature selection that
recursively removes irrelevant features based on the valida-
tion scores [11]. The RFECV algorithm aims to reduce the
features on a high-dimensional dataset, providing a solution
to address overfitting, computation time, and learning accu-
racy. Residual Networks-50 (ResNet50) [12] is a variant of
the ResNet model that has 48 convolutional layers, 1 max-
pooling layer, and 1 average pool layer [13]. This framework
can control the error rate of ultra-deep neural networks by
introducing the deep residual learning framework.

This paper proposes an IDS framework capable of han-
dling tabular IDS datasets using an image classification
approach. One noticeable challenge is converting the tab-
ular data to an image to be fed into the Convolutional
Neural Network (CNN) classifier. The framework consists
of three main parts: 1. Feature selection using RFECV-
SVM, 2. Image projection to convert the data into RGB
format, and 3. CNNmodel training & testing using Resnet50.
In this study, we examine the most common Wi-Fi net-
work attacks dataset, namely AegeanWi-Fi Intrusion Dataset
(AWID2) [14]. To the best of our knowledge, this paper is
the first DL-based IDS that projects IDS data into 2-color
coded mapping with the combination of RFECV-SVM and
Resnet50 CNN using the AWID2 dataset. Compared to pre-
vious work, our main contributions are listed below:

• We propose a CNN-based IDS that can handle the
dataset with a minimum trade-off between the number
of features, instances, and performances.

• Our framework exploits the spatial relationship through
convolution methods which tabular data cannot do.

• We inspect the correlation between features insidematri-
ces to capture the underlying spatial feature.

• Our proposed system performs feature selection on tab-
ular data, converts it into an image, and feeds the con-
verted image into Resnet50, the first DL-based IDS
that utilizes 2-coded color mapping for the tabular
IDS dataset.

• We provide performance analysis by highlighting the
F1 score of our system. On a vast imbalance dataset,
the F1 score represents our model’s performance more
accurately than the accuracy metric.

The rest of this study is organized as follows: Pre-
vious studies on reducing threat alerts are discussed in
Section II. Section III overviews the dataset used in this
study. The process of data preparation and the proposed
method are explained in Section IV. The experimental results
are presented in Section V. Section VI compares the pro-
posed method with other machine learning models. Finally,
Section VII concludes the paper and outlines directions for
future work.

II. RELATED WORK
IDS-related studies have been done for relatively a long
time. Detecting and classifying the type of attacks, espe-
cially on wireless networks, required considering many
aspects and factors. These aspects could be interpreted
as different attributes in respect to each record. In this
research, we used Wi-Fi intrusion dataset, AWID2, built by
Kolias et al. in 2015 [14]. With 154 attributes for each
record, the AWID2 dataset could be considered a high-
dimensional dataset. In previous research, AWID2 was used
to solve a binary classification problem or multiclass clas-
sification problem based on attack labels. Thing [15] pro-
posed a Deep Learning model with 98.66% accuracy on a
4-class classification problem using 154 attributes. Another
approach on 4-class classification was made by Kasongo and
Sun [16] with Feed-Forward Deep Neural Network (FFDNN)
model and obtained a 99.77% accuracy score. Unlike Kolias,
FFDNN proposed by Kosongo et al. used only 26 out of
154 attributes. Kosongo et al. used this model to classify the
AWID2 dataset as a binary problem and obtained 99.66%
accuracy. Regarding the binary classification problem,
Aminanto et al. [17] propose theDeep-Feature Extraction and
Selection (D-FES) method with better performance, 99.97%
accuracy, and 99.94% F1 score.

Problems related to high-dimensional data are usually
associated with many deep learning architectures. One of
many architectures used in deep learning implementation is
CNN, which is known for an effective technique to find
and learn patterns in grid-like topology data [18]. Hence
CNN is commonly used to solve computer vision tasks.
Residual Neural Network (ResNet) variance, Proposed by
He et al. [12] in 2016, is the most frequently used archi-
tecture as a base network [19]. A recent study done by
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Wicaksono et al. [20] used ResNet50 as a base network to
compare multiple contrastive learning methods. On the other
hand, Firat and Hanbay [21] also proposes the usage of
ResNet50 to tackle the different problems related to hyper-
spectral images. The superiority of ResNet50 compared to
other Deep Learning architectures is shown in a study done by
Septiandri et al. [22]. This study suggests that ResNet50 per-
forms better than other architectures such as DenseNet121,
DenseNet169, MobileNetV2, Xception. Also, ResNet50 out-
performs other ResNet variants such as ResNet18, ResNet34,
and ResNet101 in medical images.

As mentioned before, CNN is used to process grid-like
topology data [18]. It suggests that converting IDS Dataset
into spatial-related format is a prerequisite before imple-
menting CNN to the dataset. Duan et al. [23] mentioned in
their study that data conversion is a crucial part of their
research using the AWID2 dataset to train a classifier model.
Al-Turaiki and Altwaijry et al. [24] also converted the IDS
data format into a more suitable format for CNN. They
projected the NSL-KDD and UNSW data into 2D images
encoded in grayscale. Each projected image contains small
squares with a specific grayscale value mapped from the
attribute value in the preprocessed dataset. Sun et al. [25]
suggested another conversion method in their study. The
proposed method is 2D word embedding that maps attributes
into literal writing in an image. Even though Sun et al. [25] do
not use IDS-related datasets, their conversion method is still
compatible with CNN architecture such as ResNet, SE-Net,
and PolyNet.

Our research adopted the preprocessing method proposed
by Al-Turaiki and Altwaijry et al. [24] and enhanced it by
doubling the range of conversion value. In the original idea
proposed by Al-Turaiki and Altwaijry et al. [24], attributes
were converted into grayscale, between 0 to 255 [26]. These
grayscale values were used to generate small square images
and placed sequentially. In our case, we utilized RGB chan-
nels to convert each attribute. We adjusted the ‘‘Red’’ and
‘‘Blue’’ channels accordingly to attribute value. Since each
channel has a range value from 0 to 255, this approach allows
us to utilize twice as much range compared to grayscale. The
wider range also allows us to generate images with high color
contrast for better representation of multiple attributes with
adjacent values. For better image representation, we keep
the number of total attributes equal to the square number,
representing the NxN dimension of the image. Therefore,
we also implemented feature selection using RFECV-SVM
to get the square number of total attributes based on returned
ranking. As for the network, we used ResNet50 as our base
network.

III. DATA DESCRIPTION
In this study, we chose the IEEE 802.11 wireless network
intrusion dataset, called AWID2 [14], because it represents
the latest IEEE 802.11 network with simulated attacks in
a real network. The dataset emulated the physical environ-
ment containing ten clients and one node as an adversary.

TABLE 1. Class composition on the original dataset.

All devices were connected through an access point protected
with Wired Equivalent Privacy (WEP) encryption.

The dataset used in this study comprises four classes as
shown in Table 1. First is the ‘‘normal’’ class, represented
as class 0 during our experiment. This class indicates a
network without any attack and dominates the entire data
by ratio 10:1 compared to others combined. Other types
corresponding to three major attack types are ‘‘imperson-
ation,’’ ‘‘injection,’’ and ‘‘flooding.’’ Those classes were rep-
resented as class 1, class 2, and class 3 sequentially during our
experiment.

There are four different attacks that belong to Imper-
sonation class, namely Caffe Latte [27], Hirte [28],
Evil Twin [29] and Rogue Access Point (AP) [30]. Caffe
Latte and Hirte attacks are launched remotely by stealing
the WEP key. Clients usually keep their list of previously
connected networks for seamless connection in the future.
Then the adversary will capture the WEP key in the middle
of the handshake protocol. The difference between Caffe
Latte and Hirte is that the latest attack uses a different
approach, which is a fragmentation attack. Meanwhile, both
Evil Twin and Rogue AP attacks exploit the behavior of the
victims to look for an already connected network nearby
by name. The attacker masquerades as the legal AP to the
victim.

Injection group consists of three attacks: ARP Injec-
tion [31], Chop-Chop [32] and Fragmentation [33]. The ARP
Injection manipulates the network to generate the Initializa-
tion Vector (IV) in large numbers to be captured for the key
cracking purposes. The chop-chop attack can reveal m last
bytes in the keystream so that the adversary can deduce the
cipher without knowing the key. The fragmentation attack
exploits the 802.11 protocol which any packet exceeding the
defined maximum length should be fragmented into smaller
packets and can be delivered independently.

The last group is Flooding attacks, which comprise at least
13 different attacks such as Beacon Flooding [34], Request to
Send (RTS) Flooding [35], and Fake Power Saving [36]. The
Beacon Flooding attackwill transmit fake beacons with either
non-existing or particular spoofed identifiers. The transmis-
sion will cause overflow to the clients. The RTS Flooding
attack exploits RTS/CTS (Request to Send/Clear to Send)
protocol. The adversary will transmit many RTS frames with
a long duration window to keep the clients busy. Finally, the
Fake Power Saving attack abuses the power-saving protocol,
where the clients are enforced to be in sleep mode, then the
access points ignore them.
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FIGURE 1. Overview of the proposed method with three stages procedures.

IV. METHODOLOGY
In this section, we explain the process of data preparation
and data pre-processing. Then the process is followed by the
feature selection step and classification using CNN.

Our methodology could be defined as three sequences as
depicted in Fig. 1. The first sequence is Data Table Prepara-
tion, in which we process the normalized AWID2 datasets.
Next, we combined the normalized training and testing
datasets into one massive dataset containing 4-class data to
reduce bias in the following sequence. We only utilized 0.5%
of the entire combined data. The subsetting process is neces-
sary to avoid high memory usage during generating images
and training a model. Then, the subset data was split into a
new train and test data table.

Since we use AWID-CLS-R 4-classes data, it is required
to balance the class distribution of the training dataset by
upsampling and downsampling to avoid overfitting. We used
RFECV feature selection to extract a square number of
attributes as wewere required to project the selected attributes
into images with NxN dimension. RFECV itself is classified
as an exhausted algorithm but considerably straightforward.
RFECV algorithm will run a model using a defined estimator
and all the features in the given input data. Then, it validates
the result and removes the less important feature based on
validation. As the name suggests, RFECV will take the new
subset with removed features, retrain, and revalidate until
the model defines all features based on their importance.
RFECV using 5-fold cross-validation and SVM estimator
were then implemented into balanced distributed train data
to estimate the best-fit selected feature to represent the train
data. We need to mention that the RFECV fitting duration is
proportional to the input data, so we used 1,000 data points
sampled from balanced train data for the RFECV fitting to
keep processing time to a minimum. For better understanding
and comparison, we took the square values of 25, 36, 49,
64, 91, 100, 121, and 144 to represent the total attributes
used in the image out of 154 attributes. As mentioned before,
we chose these values to keep small squares evenly plotted
in the generated image with N x N dimension. By default,

RFECV did not return the constant number of selected fea-
tures since it depended on random state and input data used
during the process. These selected features are regarded
as first rank or first attributes. The unselected attributes
returnedwith the features rank that corresponds to the ranking
position of the ‘‘i-th’’ attributes. We took the square value
total attributes by slicing the sorted attributes based on their
ranking.

We used the selected attributes to filter the train and test
data. These filtered train and test data tables generated images
for the CNN process. Train and test data tables contain the
attribute values in 0 to 1. We multiply these values by 510
since we use two channels of RGB instead of three. The
multiplication results greater than 255 converted to the Red
channel. Simultaneously, multiplication results equal or less
than 255 converted to the Blue channel. We then generate
square images based on these values and place these images
left-right and top-down based on their attributes ranking to
form a new bigger image. Finally, the generated images were
grouped based on their model training and testing labels.

CNN is a neural network that should have at least one
convolutional layer. CNN is highly correlated to three prin-
ciples. The first is sparse interaction, which means that the
nodes in CNN are not always fully-connected because of
the presence of kernel. The second is parameter sharing,
which means that several parameters are used together in a
single model. The third is equivariant, which means that the
change in input data is highly reflected on the output since
some parameters are shared [18]. ResNet50 is one of many
types of CNN architecture. By default, ResNet50 consists of
50 hidden layers with 1,000 end-output on a fully-connected
layer. During the experiment, we replaced the fully-connected
layer with another sequential layer consisting of the Softmax
activation layer at the end to map the distribution probability
of outputs into four classes. The overview of these layers can
be seen in Fig. 2.

CNN processes usually use three types of data: training,
validation, and testing datasets. We made these datasets using
generated images from the previous sequence. Our datasets
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FIGURE 2. Overview of the ResNet50 architecture.

consist of 6,669 images of the training dataset, 741 images of
the validation dataset, and 2,223 images of the testing dataset.
We used ResNet50 as our base network and Stochastic
Gradient Descent (SGD) as an optimizer with eight epochs,
a learning rate of 0.005, and amomentum of 0.9.We usedOne
Cycle LR with a 0.005 maximal learning rate as our sched-
uler. For better observation ofmodel robustness, we repeat the
model training and testing using the same dataset three times
and then calculate the mean value and standard deviation of
each model for three iterations.

V. EVALUATION
We employed the AWID2 dataset containing more than two
million Wi-fi network data collection and classified this
dataset into four classes. We concerted eight configurations
based on the square values used to filter the number of
attributes. The pipeline sequences implemented towards each
configuration are identical. Our experiment was entirely done
using Python, supported by Pytorch as the framework for
better tuning and adjustment during CNN model training and
testing. We run our code on an Nvidia Tesla K80 Graphic
Card using 12 GB of RAM. The complete source code for
this study is available online.1

A. DATA PREPROCESSING
Before data-to-images projection and CNN model training,
it is necessary to adjust the existing dataset. We normalized
the entire dataset between values zero and one using the mean
range method. The value normalization is essential during
value conversion in data-to-image projection and CNNmodel
training to reduce bias.

1https://github.com/satrio-hw/IDS_research_CNN

The dataset that we used has 2,371,218 records of Wi-fi
network data, divided into a training and testing set with
a ratio of 75:25. As mentioned in the table, the class ratio
between the training and testing dataset is quite different.
We combine training and testing datasets into one massive
dataset to reassure data ratio consistency. As we need to
convert the records into images, this amount of data costs
high memory usage and extensive time to process. Therefore,
we reduced the data by sampling 0.5% of the original amount
to overcome this high cost. We kept a similar distribution
of subset to the original dataset. The reduction result is
11,856 records, which split into a new train and test dataset
with a ratio of 75:25.

As the ‘‘normal’’ class dominated 10-to-1 compared to
other classes, it is necessary to balance the training dataset
using upsampling and downsampling. A balanced training
dataset lowered the possibility of model overfitting during
model training. We projected each record from both balance
training and imbalance testing dataset into an image using the
RGB channel.

Our proposed methodology aims to capture a pattern
formed by data-to-image projection and produces a model
with a high understanding of these patterns. We choose RGB
channels to project the data value into images as it is visually
discernible to the human eye. By definition, the RGB channel
is an array with three values, each ranging between zero
and two hundred fifty-five. Each value represents the colors
red, green, and blue. We only used red and blue channels to
produce images with higher contrast. This approach means
that we doubled the range of one color channel to project a
red-black-blue color gradient. In addition, we implemented
a rounding function, as shown in Algorithm 1, based on the
number of attributes used during the projection to increase the
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FIGURE 3. Image Projection from given attributes value. We implement
value down rounding in projection function to increase the contrast
between the produced small squares (see also algorithm on Table. 2).

TABLE 2. Data-to-image algorithm.

contrast between adjacent values. Fig. 3 shows visualization
related to our projection method to convert tabular data into
an image.

The CNN training and testing were separated into two
sequences. The first sequence is the initial training and testing
using the combined train and test sets. The second sequence is
a stress test, using a data-to-image projection of only the data
testing subset. This stress test assures the model robustness
and better performance evaluation between multiple models
produced. We used a 69:8:23 ratio for the train-validation-
test data images in the first sequence. We then generated
15,000 new images from the subset test dataset regarding
each configuration and used the produced model from the
first sequence to classify these new images.

B. EVALUATION METRICS
The imbalanced data distribution on multi-class datasets
became our primary consideration for a fair evaluation of

each model’s performance. We used Accuracy (Acc) as an
additional metric in our evaluation since it gives the overall
insight into the correct prediction. Unfortunately, the correct
prediction is not enough to measure the model performance
since we have an extremely imbalanced testing dataset. Accu-
racy as a metric is unable to capture the minority class and
lean toward the dominant class. As this problem occurred,
we focused on the F1 score (F1) as our primary metric since
it gives a better perspective on how well model prediction
is based on precision and recall. Precision is a metric that
calculates the true positive prediction against the total pre-
dicted positive (True Positive + False positive). Recall, also
known as Detection Rate, calculates the true positive predic-
tion against the total actual positive(True Positive + False
Negative).

Since we used a multi-class dataset, a direct F1 score and
accuracy will not be sufficient since they measure binary
problems. Due to this, True Positive, True Negative, False
Positive, and False Negative definitions heavily depend on
the reflected class during the metrics calculation. Therefore,
we used the weighted F1 score and weighted accuracy to
calculate metrics for each label and found their average
weighted by the number of samples from the corresponding
class.

We also measure False Alarm Rate(FAR), which showed
the number of a particular instance classified as another
class, and False Negative Rate(FNR), which is the num-
ber of false-negative cases divided by the total number of
actual positive instances. The smaller FAR and FNR values
reflect better model performance. The following equations
can define the above metrics.

Acc =
TP+ TN

TP+ TN + FP+ FN
(1)

Accweighted =

∑n
i=0 freqclsi · Accclsi∑n

i=0 freqclsi
(2)

F1 =
2TP

2TP+ FP+ FN
(3)

F1weighted =

∑n
i=0 freqclsi · F1clsi∑n

i=0 freqclsi
(4)

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

FAR =
FP

TN + FP
(7)

FNR =
FN

FN + TP
(8)

C. EXPERIMENTAL RESULTS
We evaluated our experiment based on each sequence from
preprocessing to stress test. As we used eight configura-
tions, each evaluation contained eight different values to
compare.
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TABLE 3. RFECV selected attributes per configuration.

1) FEATURE SELECTION
As mentioned before, we used RFECV to select the essential
attributes and filtered the dataset accordingly. The treatment
of electing which feature to use depends on returned RFECV
value, whether only by selected features or combined by the
ranked features. The column on the right in Table 3 shows
the attributes based on the RFECV features selection used
in our experiments. We ordered the selected attributes based
on the index number and made a subset if RFECV returned
more than the required attributes. Conversely, as shown in the
right column, we used selected attributes combined with the
adjacent best attributes based on feature rank. The attributes
combination could be seen in Conf. III, V, VI, VII, and VIII,
indicated by bold index number.

The number of optimal attributes returned by RFECV
ranges from 45 to 116 for every iteration, causing the number
of combined attributes utterly varied. We argue that this is
due to the RFECV process done after multiple sampling on
different sessions for each configuration. However, despite
the inconsistency, the attributes’ appearance throughout every
configuration shows a certain level of consistency. For exam-
ple, the average appearance of attributes for all configurations
on another configuration with more attributes, in general,
is up to 93.37% ± 9.65%. For better illustration, this means
that 48 out of 49 attributes in Conf. III are also present in
Conf. V. Fig. 4 gives a general overview of these configu-
rations by calculating the average of attributes appearance
between each configuration to another.

2) CNN
Our study aims to train a robust model to learn the pattern
of projected images. Since we have eight different config-
urations, we train our model based on each configuration

FIGURE 4. Average of attributes appearance compared to another
configuration with more attributes.

separately. To measure the robustness of each model, as men-
tioned before, we run two different tests. The first test is
a part of the train-validate-test sequence. We iterated the
whole sequence three times. Therefore, we could calculate
the average and standard deviation of each metric. We use
the model from the last iteration to classify 15,000 images
produced regarding related configuration. Table 4 shows the
F1 score and accuracy from each model for both tests.

The train-validate-test results are the average value with
standard deviation from three iterations in the first sequence.
The comparison between the two sequences shows that each
model performed better in the stress test than the train-
validate test. Even though we could not define whether or
not the difference between the two sequences is significant
enough, we can still conclude that the models produced are
pretty robust.

We highlight three out of eight configurations since these
models produce the top-3 results in general. Models trained
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FIGURE 5. Loss during model training using 64 attributes.

TABLE 4. CNN test results for each configuration.

using Conf. V and VIII gave the highest F1 score and
accuracy during the first test, while models trained using
64 attributes came in the third place. Regardless of the close
results between Conf. V and VIII, the results tend to decrease
after using more than 81 attributes. The stress test shows
that models trained using 144 attributes produce the worst
performance after Conf. I and II. The model of the Conf. VIII
is also the only model that shows declined results, whether
F1 score or accuracy. We argue that the drop in performance
of the model trained using 144 attributes is due to overfitting
and the inability to perceive a bigger variance of the stress
test dataset. Alternately, the model trained using 64 attributes
came in the first place, with the highest F1 score and accuracy.
We took Conf. VI with 64 attributes as our benchmark for
deeper analysis and model comparison.

We trained our model using eight epochs and iterated the
entire process three times. Each iteration to train models took
on average 20 minutes to complete. We keep track of model
loss during this process, as shown in Fig. 5. The loss during

TABLE 5. Stress test results.

model training indicates a lack of validation data since our
validation loss fluctuated. The fluctuation was due to our
relatively small validation set compared to our training set;
therefore, it could not validate the general representation of
the data. However, we argue that our model was good enough
since our training loss was converged from the first epoch
onward. This statement was further proven by the stress test,
using more than double the size of our training data.

We performed the stress test using a total of
15,000 images, consisting of 13,797 images of the ‘‘Normal’’
class, 518 images of ‘‘Impersonation’’ class, 205 images of
‘‘Injection’’ class, and 480 images of ‘‘Flooding’’ class, sam-
pled randomly from the original test set. The confusionmatrix
in Fig. 6 shows relatively good results, especially in class 3,
representing the ‘‘Flooding’’ attack with a 100% detection
rate. Other classes also have a high detection rate above 99%,
with the lowest at 99.02% for ‘‘injection’’. Concurrently, the
false-alarm rates and false-negative rates for all respective
classes are under 1%, as shown in Table 5. The highest value
for false alarm rates is 0.24% for the ‘‘normal’’ class, but
we argue this is due to imbalance class distribution with the
domination of the ‘‘normal’’ class on 11-to-1 compared to
other classes combined. The overall results of the stress test
confirm the high performance produced by our model given
training dataset.

VI. COMPARISON WITH STATE-OF-THE-ART MODELS
We have the best-fit configuration to classify our projected
data table; we took several statistical machine learning
algorithms to classify the same data as a comparison.
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FIGURE 6. Stress test confusion matrix. 0 represent ‘‘Normal,’’ 1 represent
‘‘Impersonation,’’ 2 represent ‘‘Injection,’’ and 3 represent ‘‘Flooding.’’

TABLE 6. SVM results for each kernel.

The classification used similar data points as the CNN stress
test.We process the data through different algorithms, namely
SVM, Decision Tree, and XGBoost. SVM was chosen as it
is an estimator parameter used on RFECV. The way SVM
works highly depend on the kernel implemented to separate
the data into different classes. We used three different kernels
and chose the best results for comparison to other algorithms.
SVMmodel with Linear kernel produced the best result in all
configurations compared to other kernels, namely RFB and
Polynomial, as shown in Table 6. We chose the Decision Tree
as the second algorithm since it is generally used to handle
multi-class problems. We also added XGBoost with default
hyper-parameter for better comparison.

Table 7 shows the result comparison between the three
algorithms. The SVM model delivered the worst perfor-
mance with the highest results, around 97% for accuracy
and F1 score, despite using the optimal kernel compared to
other options. Simultaneously, the Decision Tree delivered
better results on 99.70% for accuracy and F1-score with
49 attributes. Finally, the best results of all statistical models
were acquired by the XGBoost model, with a paper-thin dif-
ference compared to the Decision Tree. XGBoost also shows

TABLE 7. Statistical model results comparison for each configuration.

FIGURE 7. Comparison between CNN and statistical weighted metrics.

alignment with our CNN result with an F1 score of 99.73%
and an accuracy of 99.71% on the 6th configuration.

Fig. 7 shows the direct comparison between CNN and all
statistical methods. Performance-wise, all methods deliver
good results since the F1 score and accuracy are above 95%.
If we only look at the best result from CNN and statistical
approach, the difference is quite slim, with CNN higher than
XGBoost 0.01%. Therefore, we could conclude that CNN
models perform comparably to the statistical method, based
on only the weighted matrix F1 score and accuracy. Mean-
while, if we also consider the execution time during training
and testing, statistical methods are preferable since they only
need execution time less than 20 minutes. Despite learning
data features and delivering exceptional performance, the
flaw in execution time becomes a major drawback to CNN
implementation on tabular data.

VII. CONCLUSION AND FUTURE WORK
This paper present a novel mapping method of tabular data
into grid-based data that convolutional neural networks can
learn for IDS purposes. We map the tabular data of wireless
attacks into images by exploiting the sequences of attributes
placed in a matrix. The matrix values are represented by
two-coded color mapping, blue and red. This approach out-
performs the accuracy of previous work [24], which employs
grayscale mapping. With the optimized size of attributes
using RFECV feature selection and ResNet50 CNN clas-
sifier, we achieve the best performance with 99.73% of
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F1 score. We also successfully keep the false alarm rate low,
about 0.24%.

In the near future, the sequence of attribute placement
in the matrix would be interesting to examine. CNN-based
classifier exploits the underlying spatial information. Then
different placement might affect the learning results. In addi-
tion, lightweight processing should be the main consideration
when using CNN-based classifiers. Finally, different datasets
can verify that the proposed method is suitable for different
domain knowledge.
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